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ABSTRACT Microsatellites are repetitive DNA sequences usually found in non-coding regions of the genome.
Their quantification and analysis have applications in fields from population genetics to evolutionary biology.
As genome assemblies become commonplace, the need for software that can facilitate analyses has never
been greater. In particular, R packages that can analyze genomic data are particularly important since this is
one of the most popular software environments for biologists. We created an R package, micRocounter, to
quantify microsatellites. We have optimized our package for speed, accessibility, and portability, making the
automated analysis of large genomic data sets feasible. Computationally intensive algorithms were built in
C++ to increase speed. Tests using benchmark datasets show a 200-fold improvement in speed over existing
software. A moderately sized genome of 500 Mb can be processed in under 50 sec. Results are output as an
object in R increasing accessibility and flexibility for practitioners.
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Genomes are composed of sequences that can be classified by their
function, composition, or location on the chromosome. Microsatellites
are DNA sequences that are characterized by the repetition of motifs
between 2 and 6 bp. These sequences are primarily found in non-coding
regions of the genome, although some are located in regulatory or
intronic regions (Pearson et al. 2005). Microsatellites in non-coding
regions are thought to be mostly free from selective pressure, and their
evolution is therefore largely a stochastic function of time. One notable
exception to this is microsatellites in regions upstream from genes or in
introns where they can have impacts on modulating expression levels
(Rohilla and Gagnon 2017).

Combined, these characteristics of microsatellites make them useful
in a variety of applications. Their repetitive nature makes them easy to
detect and characterize in genome sequence data. Their relative neu-
trality in comparison to many sequence classes allows them to serve as
biological clocks on evolutionary timescales and allows for the infer-
ence of population demography (Nielsen 2005; Slatkin 1995; Spencer
et al. 2000; Sun et al. 2009; Waits et al. 2000). In studies of natural

populations, microsatellites are frequently used to assess genetic diver-
sity within species and populations (Fischer et al. 2017; Serrano et al.
2009). The variability and abundance of microsatellites also allow them
to be used to differentiate between individuals within a population,
hence leading to applications in forensics, kinship analysis, and
medical profiling (Detwiler et al. 2017; Schumer et al. 2017). Finally,
microsatellite analysis has been used to monitor the progression of
cancer through quantifying the rate at whichmicrosatellites are gained,
or lost (Boland et al. 1998; Sideris and Papagrigoriadis 2014; van
Tilborg et al. 2012).

More than a tool, microsatellites themselves are also under inves-
tigation. Microsatellites typically have higher mutation rates than point
mutations. The most widely accepted hypothesis for this highmutation
rate is replication slippage, in which DNA polymerase may slip on the
template strand leading to either an expansion or contraction of the
number of repeat units present (Klintschar et al. 2004). The distribution
of microsatellite lengths is thought to be maintained through a balance
of point mutations which disrupt repeats and replication slippage
(Kruglyak et al. 1998). Microsatellites upstream of genes or in intronic
regions can impact gene regulation with phenotypic effects involving
diseases like acute lymphoblastic leukemia or changes in diastolic blood
pressure and albumin levels (Akagi et al. 2009; Gymrek et al. 2016).
Large comparative studies characterizing microsatellite content of ge-
nomes across large clades have shown that some lineages show excep-
tionally rapid changes in both microsatellite content and abundance
(Adams et al. 2016; Fan and Guo 2018). Microsatellite analyses
have diverse applications and are themselves an important aspect of
genome evolution. Thus, it is crucial to have efficient, accurate, and
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freely available tools for microsatellite characterization. Currently the
most widely used program to our knowledge is Palfinder which is
written in Perl and as such can be challenging for some users to install
and run (Adams et al. 2016; Castoe et al. 2010; Castoe et al. 2012). Our
R package, micRocounter, aims to resolve this challenge and facilitate
accurate and fast microsatellite characterization. This software provides
a range of information useful in different types of analyses, including
total content of each type of microsatellite and their location in the
genome. Users can install this open source R package directly from
GitHub, and it is compatible with all major operating systems.

METHODS
We implemented our microsatellite characterization tool in R to
provide the greatest utility to the greatest number of biologists. Com-
pared to competing platforms, R provides a significant advantage in
statistical computing and user interface. However, the convenience
and flexibility of R is undermined by a lack of speed. Therefore, the
bulk of the algorithm was written in C/C++ and ported to R via the
package Rcpp (Eddelbuettel andBalamuta 2018). TheC/C++ algorithm
uses only functions included in ANSI C. The package has no other
dependencies, and is only 94 KB.

The overall function of the package is to process FASTA files and
output microsatellite information as R objects. The primary function is
ReadFasta, which takes three arguments: file, minrepeats, and squishy.
The argument file is supplied as a character vector and describes
the relative location of the FASTA file to be analyzed. The argument
minrepeats, is supplied as a numeric vector of length five, with integer
values corresponding to the minimum number of twomers, threemers,
fourmers, fivemers, and sixmers required to be counted as a micro-
satellite for the purposes of analysis. The argument squishy is also a
numeric vector of length five and with integer values corresponding to
the maximum number of imperfections in a microsatellite that can be
encountered before the microsatellite is considered to have ended. The
R object returned by ReadFasta is a list with seven elements. The first
five elements are each lists that contain the microsatellite content in-
formation for each monomer length. These first five elements each
contain four vectors that hold the sequence name, location, monomer
type and number of repeats present in the analyzed FASTA file. The
final two elements contain the assembly size and the total microsatellite
content in Mb. A typical script showing usage is shown below:

library(micRocounter)
micro.analysis ,- ReadFasta(file = “Chrysina_woodi”,
minrepeats = c(6, 4, 3, 3, 3),
squishy = c(1, 1, 1, 1, 1)
twomer.report ,- FindXmer(mon_len = 2,
x = micro.analysis)

When ReadFasta is called, an internal C function reads the FASTA
file character by character, omitting newlines and without regard to
capitalization.Eachcharacter is read intoabuffer string, consistingof the
previous 12 characters. If a sequence of recent characters match the
sequence immediately preceding it, a flag is triggered, the repeat se-
quence is temporarily stored, andsubsequent sequences are comparedto
this stored sequence only. Once the number of repeated sequences
exceeds the minimum number specified by the second argument
(minrepeats), the location of the initial repeat is permanently stored,
along with the sequence itself. Subsequent bases will continually be
compared with the memorized sequence until the number of discon-
tinuities exceeds the value specified by the third argument (squishy). At
this point, the flag will reset, and the number of repeats included in the
run is stored. The algorithm then begins anew and subsequent bases

will be cycled through the buffer string until the flag is triggered again.
The presence of ambiguous base calls in a sequence are dealt with by
treating these bases as mismatches with regard to any repeat they are
found within. For instance, a sequence of ATNTATATATAT would
be recognized as an AT repeat of length 6 with one mismatch. Other
ambiguous base calls such as R and Y are treated identically. This
algorithm continues until the end of file is reached, at which point
the location, length, and sequence descriptions for all repeats are as-
sembled into the R list described above, along with total microsatellite
content and genome size, and exported back to the original R function.
Below we show pseudocode that describes the basic functioning of our
algorithm.

Pseudocode

Open FASTA file as a file stream;
while filestream != end of file{
if filestream is a member of (A, G, T, C):{
add filestream to a 12 character buffer;
check buffer for repeats;
if repeats are found for a monomer of length x:{
flag on;
continue reading file;
if next sequence of x characters contains repeats:
increment a counter and continue;
else:
store length and location in memory;
flag off and get out;
if number of mismatches exceeds threshold:
store length and location in memory;
flag off and get out;
}
}
}

Once a FASTA file has been processed, control reverts back to the
R platform and additional analyses can be run. The package comes with
one additional function, FindXmers, which takes the list object created
by ReadFasta and reorganizes for simplicity and accessibility. It takes
two arguments, mon_len and micro_list. The argument mon_len is a
single integer from 2-6 and describes the subset of microsats that
should be the organized into a table. The argument micro_list is the
list object returned by the function ReadFasta. The function mon_len
returns a dataframe with six columns. The row names denote the
monomer. The first two columns provide the total number of loci
and the total number of bases found in a given monomer class in the
FASTA file. The third column contains a list giving the location, length
and sequence for each microsatellite locus. The final three columns
report the fraction that a monomer represents within a repeat length
class, the fraction that a monomer represents for all microsatellites, and
the fraction that a monomer represents in the whole genome.

For comparison we tested our software against Palfinder version
0.02.04. All analyses described belowwere conducted with FindPrimers
set to 0, platform as 454, inputFormat as FASTA, andminimum repeats
as 6,4,3,3,3 for two, three, four, five, and six-mers respectively. All other
parameters were left as default, and input and output paths were set to
local directories.

Data Availability
The package micRocounter can be downloaded and installed direct
from GitHub: github.com/johnathanlo/micRocounter, and scripts for
running all analyses described in the paper are available from the
GitHub repository github.com/johnathanlo/micRocounter_manuscript.
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RESULTS AND DISCUSSION
To evaluate the accuracy of our software we characterizedmicrosatellite
content of a FASTA file generated with known microsatellite content.
The simulated sequence was 28 Kbp long with no microsatellite loci.
Within this sequence, we randomly inserted 117 microsatellite loci
comprising a total length of 3626 bp. These loci were comprised
of 23 two-mer loci (366 bp total), 22 three-mer loci (528 bp total),
24 four-mer loci (764bp total), 24five-mer loci (960bp total), and24 six-
mer loci (1008bp total). In a comparisonofmicRocounter andPalfinder
(Castoe et al. 2012) microsatellite content was identified equally. The
only difference in the result of the two programs was in the collapsing

of equivalent repeats.(reversals and complimentary sequences). For
instance, a repeat motif of GACT can be reported as TCAG, AGTC,
or CTGA. To assess the efficiency of our software, we analyzed 15
insect genome assemblies and compared micRocounter run-times to
Palfinder. The sizes of our 15 benchmark genomes ranged from
12 Mbp to 3.8 Gbp (Table 1). We found that our software offered
considerable improvements in speed compared to Palfinder. More-
over, these improvements are substantial enough to render the ac-
tual processing time of genomes inconsequential in the majority of
circumstances. All 15 genomes were analyzed by micRocounter in
approximately 13 min (769 sec), compared to 42 hr (151572 sec) in

n Table 1 Insect genomes used in benchmarking and testing micRocounter. Assembly size is the size of the assembled genome and not
necessarily representative of the true genome size since some assemblies are highly fragmented or missing significant proportions of the
genome. All genomes were downloaded from NCBI

Order Species Assembly Size (Mbp) Assembly Version Accession Number

Blattodea Blattella germanica 2037 1 GCA_003018175.1
Blattodea Cryptotermes secundus 1018 1 GCA_002891405.2
Coleoptera Diabrotica virgifera 2409 2 GCA_003013835.2
Coleoptera Priacma serrata 12 1 GCA_000281835.1
Diptera Aedes aegypti 1,383 5 GCA_002204515.1
Diptera Drosophila albomicans 253 1 GCA_000298335.1
Diptera Drosophila melanogaster 144 6+ GCA_000001215.4
Diptera Liriomyza trifolii 69 1 GCA_001014935.1
Diptera Megaselia abdita 412 1 GCA_001015175.1
Hemiptera Rhodnius prolixus 706 1 GCA_000181055.3
Hymenoptera Megastigmus dorsalis 589 1 GCA_900490025.1
Lepidoptera Calephelis virginiensis 855 1 GCA_002245475.1
Lepidoptera Vanessa tameamea 357 1 GCA_002938995.1
Odonata Calopteryx splendens 1,628 1 GCA_002093875.1
Phasmatidae Clitarchus hookeri 3802 1 GCA_002778355.1

Figure 1 Processing time and memory usage of
micRocounter across 15 representative genomes. In
each panel the x axis represents genome size of
the benchmark genomes in Mb. A) Comparison of
execution time for micRocounter and Palfinder on
benchmark genome set. B) Execution time for
micRocounter on benchmark genome sets with time
on a log scale. C) Peak memory usage running
micRocounter on benchmark genomes.
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Palfinder (Figure 1A-B). This equates to approximately a 200-fold
improvement in runtime allowing for the analysis of large sets of
genomes to be analyzed. Average genome processing speed for
micRocounter was 20Mbp/s, fast enough to analyze a human genome
for microsatellite content in under 3 min. We also assessed the mem-
ory usage of our function and found that memory utilization
is minimal. Clitarchus hookeri had the largest genome in our bench-
mark dataset (3.8 Gbp). Peak memory usage for analysis of this ge-
nome was 35.5 MB. This level of RAM usage ensures that even large
genomic datasets can be analyzed on standard laptops. This is an added
benefit of using C to process the sequences since genomes are never
stored in memory but rather are read as a stream that minimizes peak
memory demands.

In conclusion, micRocounter provides a fast, accurate, and open
source software in the R environment that will facilitate analyses of new
genomes and comparative analyses of microsatellite content across
genomes of many species. Furthermore, because it is in the R environ-
ment, it is simple and straightforward for users to take their results and
use them in downstream analyses or visualizations that are already
available in other packages. All memory usage and processing time
calculations were completed on a MacBook Pro with a 2.8 GHz i9
processor and 16 GB of RAM. Scripts were run in RStudio version
1.1.442 usingR version 3.5.2 (RDevelopment CoreTeam2013; RStudio
Team 2015).
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